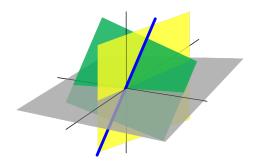
Algèbre Linéaire

Cours du 28 novembre

Jérôme Scherer



Question 7: La matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$				
$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} A & A & \bigcirc \\ \bigcirc & A & A \\ \bigcirc & \bigcirc & A \end{pmatrix}$				
est diagonalisable mais pas inversible n'est ni inversible ai diagonalisable est inversible et diagonalisable est inversible mais pas diagonalisable				
i est in inversible na diagonalisable est inversible mais pas diagonalisable				
det A = 1.1.1 = 1 = 0 invertible				
det $A = 1.1.1 = 1 \neq 0$ invertible sale valent propre 1, mel $x(1) = 3$ din $E_1 = 1$				
$d\hat{n} \in 2 = 1$				

$ \{p \in \mathbb{P}_3 \mid q(0) - p(0) = 0\} $ est un sous-espace vectoriel de \mathbb{P}_3 . $ \land -p(\circ) = \circ \iff p(\circ) = 1 $ $\circ \not\leftarrow \cdot$.					
est un sous-espace vectoriel de $\mathbb{P}_{\!3}.$	1 - p(0)	= 0 (= p(0) = 1	04		
	□ VRAI				
Question 14: Soit $A \in M_{4\times 4}(\mathbb{R})$ une matrice de rang 3. Si \vec{u} , \vec{v} , \vec{w} sont des vecteurs linéairement indépendants dans \mathbb{R}^4 , alors $A\vec{u}$, $A\vec{v}$, $A\vec{w}$ sont linéairement indépendants dans \mathbb{R}^4 .					
☐ VRAI FAUX					
T: R4		1000			
(E, (E, / E4)	lin indép				
(Aei, Aei, A	24)				

 ${\bf Question}~{\bf 13}\colon$ Soit q un polynôme de degré 3 quel conque. Alors l'ensemble

Quiz 1. Valeurs propres

Les valeurs propres de la matrice
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix}$$
 sont

- (A) 1, 2 et 3
- (B) 2, $\sqrt{3}$ et $-\sqrt{3}$
- (C) -1, -2 et -3
- (D) -2, $\sqrt{3}$ et $-\sqrt{3}$

Quiz 2. Le polynôme caractéristique

Si $c_A(t) = (t-2)^4(t+3)^2(t-7)$, laquelle des quatre affirmations suivantes est toujours vraie?

- (A) dim Ker $(A 2I_7) = 1$ et dim Ker $(A 3I_7) = 1$
- (B) dim Ker $(A 2I_7) = 4$ et dim Ker $(A 7I_7) = 1$
- (C) dim KerA = 1 et dim Ker $(A 7I_7) = 1$
- (D) dim KerA = 0 et dim Ker $(A 7I_7) = 1$

Quiz 3. Polynômes scindés

DÉFINITION

Un polynôme p(t) à coefficients dans \mathbb{F}_2 est dit scindé sur \mathbb{F}_2 s'il s'écrit comme produit de facteurs de la forme $t-\lambda$ pour des $\lambda \in \mathbb{F}_2$.

On considère le polynôme $p(t) = t^2 + 1$. Laquelle des affirmations suivantes est vraie :

- (A) p(t) est scindé sur \mathbb{F}_2 et p(t) est scindé sur \mathbb{R} .
- (B) p(t) est scindé sur \mathbb{F}_2 et p(t) n'est pas scindé sur \mathbb{R} .
- (C) p(t) n'est pas scindé sur \mathbb{F}_2 et p(t) est scindé sur \mathbb{R} .
- (D) p(t) n'est pas scindé sur \mathbb{F}_2 et p(t) n'est pas scindé sur \mathbb{R} .

5.6.1 Application : calcul de puissances

Soit A une matrice diagonalisable. Il existe une matrice inversible P et une matrice diagonale D telles que

$$A = PDP^{-1}$$

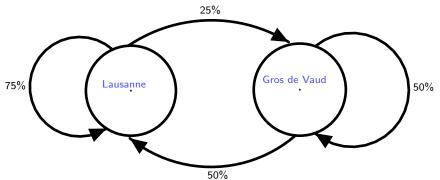
Mais alors on a aussi

$$A^{2} = PDP^{-1}PDP^{-1} = PD^{2}P^{-1} \text{ et } A^{k} = PD^{k}P^{-1}$$

$$D = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \dots & 0 & \lambda_{n} \end{pmatrix} \Rightarrow D^{k} = \begin{pmatrix} \lambda_{1}^{k} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{k} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \dots & 0 & \lambda_{n}^{k} \end{pmatrix}$$

5.6.2 Evolution de populations

On étudie les populations de Lausanne et du Gros de Vaud. La situation (sans lien avec la réalité du canton) est représentée par la situation suivante :



Appelons u_k la population urbaine l'année k (en pourcents) et r_k la population rurale.

5.6.2 EVOLUTION DE POPULATIONS : MODÈLE

5.6.2 Evolution de populations II

Nous avons modélisé matriciellement cette situation et posons

$$A = \begin{pmatrix} 3/4 & 1/2 \\ 1/4 & 1/2 \end{pmatrix}$$
. Ainsi

$$\left(\begin{array}{cc} 3/4 & 1/2 \\ 1/4 & 1/2 \end{array}\right) \left(\begin{array}{c} u_k \\ r_k \end{array}\right) = \left(\begin{array}{c} u_{k+1} \\ r_{k+1} \end{array}\right)$$

si bien que

$$\left(\begin{array}{cc} 3/4 & 1/2 \\ 1/4 & 1/2 \end{array}\right)^k \left(\begin{array}{c} u_0 \\ r_0 \end{array}\right) = \left(\begin{array}{c} u_k \\ r_k \end{array}\right)$$

Pour comprendre ce qui se passe dans le futur (lointain), il faut donc calculer $\lim_{k\to\infty} A^k$.

5.6.2 Evolution de populations III

Nous calculons

$$\mathcal{D} = \begin{pmatrix} \Lambda & O \\ O & \Lambda /_{\mathcal{L}} \end{pmatrix}$$

- $c_A(t) = (t-1)(t-1/4)$
- $\mathfrak{B}=\left(\left(\begin{array}{c}2\\1\end{array}\right),\left(\begin{array}{c}1\\-1\end{array}\right)\right) \text{ est une base de }\mathbb{R}^2 \text{ formée de }$ vecteurs propres de A
- $P = (Id)_{\mathcal{B}}^{\mathfrak{Can}} = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, P^{-1} = (Id)_{\mathfrak{Can}}^{\mathfrak{B}} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$
- **5** Formule de changement de base : $A^k = PD^kP^{-1}$.

5.6.2 EVOLUTION DE POPULATIONS IN

Chapitre 6 : Orthogonalité

- \mathbb{R}^n est non seulement un espace vectoriel, c'est un espace euclidien.
- Nous avons une notion de distance et d'angle.
- La base canonique est composée de vecteurs orthogonaux deux à deux et unitaires (de longueur 1).

6.1.1 LE PRODUIT SCALAIRE

DÉFINITION

Soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs de \mathbb{R}^n . Le produit scalaire est

$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u}^T \overrightarrow{v} = u_1 v_1 + \dots + u_n v_n.$$

Propriétés

- **①** Commutativité. $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$
- **2** Distributivité. $\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$
- **3** Compatibilité action. $\alpha(\overrightarrow{u} \cdot \overrightarrow{v}) = \overrightarrow{u} \cdot (\alpha \overrightarrow{v}) = (\alpha \overrightarrow{u}) \cdot \overrightarrow{v}$

Preuve. Les propriétés 1-3 sont celles de la multiplication de matrices. Pour 4, $\overrightarrow{u} \cdot \overrightarrow{u} = u_1^2 + \cdots + u_n^2 \ge 0$. On a l'égalité si et seulement si tous les $u_i = 0$.

6.1.2 LA NORME

Définition

La longueur ou norme d'un vecteur \overrightarrow{u} de \mathbb{R}^n est

$$\|\overrightarrow{u}\| = \sqrt{\overrightarrow{u} \cdot \overrightarrow{u}} = \sqrt{u_1^2 + \dots + u_n^2}.$$

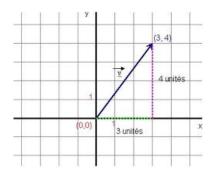
Un vecteur de norme 1 est dit unitaire. Pour normaliser un vecteur non nul, i.e. pour le rendre unitaire, il suffit de le diviser par sa norme :

$$\frac{\overrightarrow{u}}{\|\overrightarrow{u}\|} = \begin{pmatrix} u_1/\|\overrightarrow{u}\| \\ \vdots \\ u_n/\|\overrightarrow{u}\| \end{pmatrix} \text{ est unitaire}$$

6.1.3 Théorème de Pythagore classique

Dans \mathbb{R}^2 la norme d'un vecteur $\overrightarrow{u} = \begin{pmatrix} a \\ b \end{pmatrix}$ vaut

$$\|\overrightarrow{u}\| = \sqrt{a^2 + b^2}$$



La norme du vecteur \overrightarrow{u} est la longueur de l'hypoténuse du triangle rectangle dont les cathètes sont de longueur a et b.

6.1.3 EXEMPLES 0 6 e vecter W Va to COS L 12+49+49+

6.1.4 LA DISTANCE

DÉFINITION

La distance entre deux vecteurs \overrightarrow{u} et \overrightarrow{v} de \mathbb{R}^n est

$$\boxed{d(\overrightarrow{u},\overrightarrow{v}) = \|\overrightarrow{u} - \overrightarrow{v}\|}. = \|\overrightarrow{v} - \overrightarrow{u}\|$$

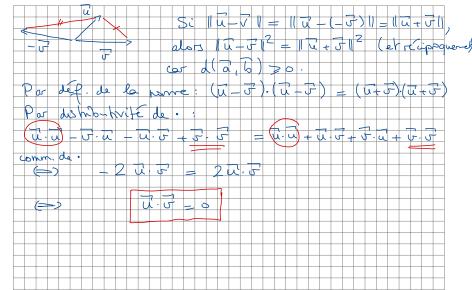
Exemple. La distance entre \overrightarrow{e}_1 et \overrightarrow{e}_2 dans \mathbb{R}^2 est

$$d(\overrightarrow{e}_1, \overrightarrow{e_2}) = \| \begin{pmatrix} 1 \\ -1 \end{pmatrix} \| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

Ces deux vecteurs sont orthogonaux. Comment voit-on cela? Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si la distance entre \overrightarrow{u} et \overrightarrow{v} est la même que la distance entre \overrightarrow{u} et $-\overrightarrow{v}$.

6.1.4 Remarque

Quelles sont les conséquences de l'égalité $d(\overrightarrow{u}, \overrightarrow{v}) = d(\overrightarrow{u}, -\overrightarrow{v})$?



6.1.5 Orthogonalité

DÉFINITION

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} de \mathbb{R}^n sont orthogonaux si

$$\overrightarrow{u}\cdot\overrightarrow{v}=0$$
.

THÉORÈME DE PYTHAGORE

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2. \qquad \text{or } \|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u}\vec{v} + \|\vec{v}\|^2$$

Notation. Soit W un sous-espace de \mathbb{R}^n . On note W^{\perp} l'ensemble de tous les vecteurs orthogonaux à W. Ainsi

$$W^{\perp} = \{ \overrightarrow{u} \in \mathbb{R}^n \mid \overrightarrow{u} \cdot \overrightarrow{w} = 0 \text{ pour tout } \overrightarrow{w} \in W \}.$$

C'est un sous-espace de \mathbb{R}^n (série 11).

6.1.5 Exemple

Soit W le sous-espace de \mathbb{R}^3 donné par l'équation 2x - y + 3z = 0. On veut décrire ce plan et W^{\perp} . w dish. a+26 -Ba + 2c à réjoudre

6.1.5 EXEMPLE, SUITE some Car

6.1.5 Exemples

PROPOSITION

La droite perpendiculaire au plan d'équation ax+by+cz=0, et passant par l'origine, dans \mathbb{R}^3 , est engendrée par $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

Soit A une matrice de taille $m \times n$.

THÉORÈME

- $(\operatorname{Im} A)^{\perp} = \operatorname{Ker}(A^{T}).$

Preuve.

6.1.6 CALCUL D'ANGLES

Le produit scalaire permet aussi de calculer l'angle entre deux vecteurs.

Loi du cosinus

$$\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \cdot \|\overrightarrow{v}\| \cos \alpha.$$

Le produit scalaire de deux vecteurs est

- **1** nul quand $\cos \alpha = 0$, i.e. les vecteurs sont perpendiculaires;
- $\mbox{\ \ and \ }\cos\alpha=\mbox{\ \ }$ i.e. les vecteurs sont colinéaires et de même sens ;
- minimal quand $\cos \alpha = -1$, i.e. les vecteurs sont colinéaires et de sens opposé.

6.2.1 Familles orthogonales

DÉFINITION

Une famille $\{\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k\}$ de vecteurs de \mathbb{R}^n est orthogonale si $\overrightarrow{u}_i \perp \overrightarrow{u}_j$ pour tous $i \neq j$. Cette famille est orthonormée si de plus $\|\overrightarrow{u}_i\| = 1$ pout tout i.

Exemple. La base canonique $(\overrightarrow{e}_1, \ldots, \overrightarrow{e}_n)$ est orthonormée. En général on appelle base orthogonale de W une famille orthogonale ordonnée qui forme une base de W. De même pour une base orthonormée.

THÉORÈME.

Une famille orthogonale de vecteurs non nuls est libre.

6.2.1 PREUVE famille orthograle de curec 1606 k 2~ bboson $\alpha_1 =$ KR = pour 15 is k al ale - da ue distr compathlité arciación uj. uj. cor wi =0

6.2.1 Familles orthogonales

DÉFINITION

Une famille $(\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k)$ de vecteurs de \mathbb{R}^n est orthogonale si $\overrightarrow{u}_i \perp \overrightarrow{u}_j$ pour tous $i \neq j$. Cette famille est orthonormée si de plus $\|\overrightarrow{u}_i\| = 1$ pout tout i.

Rappel.

- Deux vecteurs \overrightarrow{u} et \overrightarrow{v} de \mathbb{R}^n sont orthogonaux si leur produit scalaire est nul : $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.
- ② Par distributivité du produit scalaire, $\overrightarrow{u} \perp \overrightarrow{a}$ et $\overrightarrow{u} \perp \overrightarrow{b}$ implique que $\overrightarrow{u} \perp \operatorname{Vect}\{\overrightarrow{a}, \overrightarrow{b}\}.$

THÉORÈME

Une famille orthogonale de vecteurs non nuls est libre.

6.2.2 Coordonnées dans une base orthogonale

Soit W un sous-espace de \mathbb{R}^n et $(\overrightarrow{u}_1, \dots, \overrightarrow{u}_k)$ une base orthogonale de W.

THÉORÈME

Pour tout vecteur $\overrightarrow{w} \in W$, on a $\overrightarrow{w} = \alpha_1 \overrightarrow{u}_1 + \cdots + \alpha_k \overrightarrow{u}_k$ et $\boxed{\alpha_j = \frac{\overrightarrow{w} \cdot \overrightarrow{u}_j}{\|\overrightarrow{u}_j\|^2}}$

Preuve. On sait que \overrightarrow{w} s'écrit comme combinaison linéaire $\alpha_1 \overrightarrow{u}_1 + \cdots + \alpha_k \overrightarrow{u}_k$. Alors

$$\overrightarrow{w} \cdot \overrightarrow{u}_j = (\alpha_1 \overrightarrow{u}_1 + \dots + \alpha_k \overrightarrow{u}_k) \cdot \overrightarrow{u}_j = \alpha_j \overrightarrow{u}_j \cdot \overrightarrow{u}_j = \alpha_j ||\overrightarrow{u}_j||^2$$

$$\operatorname{car} \overrightarrow{u}_i \cdot \overrightarrow{u}_j = 0 \text{ si } i \neq j.$$

6.2.2 Exemple

On construit une base orthogonale de \mathbb{R}^3 en commençant avec le plan d'équation 2x-3y+z=0.

